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The free vibrations of a circular plate having elastic constraints variable according to the
angular co-ordinate are investigated. The non-uniform translational and rotational stiffness
of the constraints are expanded in a Fourier series; it is assumed that the system presents
a symmetry axis. The mode shapes are expanded in a Fourier–Bessel series by using the
Rayleigh–Ritz method. The eigenfunctions of the free-edge circular plate vibrating in
vacuum are assumed as admissible functions. This choice allows one to compute the
potential energy of the plate using the kinetic energy of single modes of free-edge plates.
The effect of the in-plane load is included and internal constraints are studied. By using
the same technique, the free vibrations of a circular plate resting on an annular,
non-uniform, Winkler foundation are investigated. Numerical results are given for the cases
studied already, in order to validate the proposed method, and for bolted (or riveted) plates
fixed by different numbers of bolts. 71997 Academic Press Limited

1. INTRODUCTION

Since plates are common components of structures, plants and containers in various
industrial fields, knowledge of their modal behaviour is very useful for design engineers
and researchers. Many papers deal with the free vibrations of circular plates. The first
studies on this topic are attributed to Poisson [1] and Kirchhoff [2]. Leissa [3] has presented
a thorough summary of the previously published literature up to the year 1965. In
references [4–7] the free vibrations of free-edge circular plates were studied and both the
frequency and mode shape parameters are given for different values of Poisson’s ratio n.
In particular, Itao and Crandall [6] have published the lowest 701 eigenvalues and
corresponding eigenvectors for n=0·33 and Amabili et al. [7] have studied the influence
of the Poisson’s ratio in the full range from 0 to 0·5 of the possible values. Numerical
results relative to simply supported edge have been given by Leissa and Narita [8] for the
full range of the possible Poisson’s ratios and by Leissa [3] for clamped plates. A complete
work on the free vibration of circular plates having axisymmetric edge constraints is that
of Azimi [9], where the receptance method was used.
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The practical realization of a simply supported or clamped plate to be used in an
experimental test is sometimes a problem. In fact, the realization of an infinite stiff
constraint for flexural edge displacement and rotation is obviously impossible and only an
approximation of the ideal constraint is possible. A study of the finite stiffness of uniform
constraints for rectangular plates has been given in reference [10]. Actually, the plate
boundary conditions are often realized by using bolts or rivets, so that the boundary
conditions are not uniform. Therefore, the real constraint is an elastic edge support, whose
stiffness is not constant, due to bolts, and this is a function of the co-ordinate describing
the edge. A study of circular plates having non-uniform edge constraints has been reported
[11], in which numerical results were given for the case where the rotational stiffness varies
as one cosinusoidal wave; in this paper the Fourier expansion of the variable edge
constraints was introduced. Also Narita and Leissa [12, 13] studied elastic translational
and rotational constraints that are not uniform around the edge of circular plates; they
obtained a series solution by imposing the boundary conditions and give many numerical
results. Moreover, the free vibrations of a circular plate clamped on part of its boundary
and simply supported on the remainder have been previously studied [14, 15]; in particular
Bartlett [14] used an interesting variational approach. Hirano and Okazaki [16] studied a
circular plate clamped, simply supported or free on part of its boundary and simply
supported, free or clamped, respectively, on the remainder.

In the present paper, the free vibrations of a circular plate with flexible constraints
having variable stiffness according to the angular co-ordinate are investigated. Both the
flexible constraints to displacement and rotation are considered; these constraints can also
be internal with respect to the plate edge. The non-uniform translational and rotational
stiffness of the constraints is expanded into a Fourier series; only cosines are considered,
due to the assumed presence of a symmetry axis, as in any equidistant bolt disposition.
Due to the assumed symmetry of the problem, two families of modes, symmetric and
antisymmetric ones, are obtained. The plate is assumed to be thin and made of linear
elastic, homogeneous and isotropic material, so that the classic theory of plates is
applicable. The effect of an uniform in-plane load is included. The mode shapes are
expanded in a Fourier–Bessel series by using the Rayleigh–Ritz method [17, 18]. As
admissible functions, the eigenfunctions of the free-edge circular plate vibrating in a
vacuum are assumed. This choice allows one to compute the potential energy of the plate
by using the kinetic energy of modes of free-edge plates. As a consequence of the inclusion
principle, the computed eigenvalues approach the actual eigenvalues asymptotically and
from above, as the number of terms considered in the series increases; also the
corresponding eigenvectors approach the actual mode shapes. The method used in the
present paper to obtain the solution is therefore different from that used in references
[11–13] and is based on the artificial spring method [19, 20]. The advantage is that it can
also be used to study circular plates joined to quite complex structures; in fact the artificial
spring method has been introduced in substructuring. Moreover many complicating
effects, e.g. in-plane load, foundations and added distributed or lumped masses, can be
included in the study with little complication of the theory.

The aim of this paper is to apply the method to analyze the constraint given by bolts
or rivets; in fact it seems that a similar method has been applied to bolted (or riveted) plates
only in a recent paper of the present authors [21]. Circular plates are mechanical
components used to close circular pressure vessels, circular tanks and pipes, and are usually
connected to other structural elements by using bolts or rivets. This constraint gives
restriction to translation and rotation of the plate at the bolts; therefore one has a
constraint that is not uniform around the mean radius where the bolts are placed.
Moreover bolts generate a compressive in-plane stress inside the plate, due to the Poisson
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effect [22]. In fact, a bolt gives a compressive pressure to the plate. When applying this
pressure, because of the Poisson effect, a portion of the plate expands in an inward
direction. A similar expansion is given by other bolts. Due to the combined ‘‘inwards’’
effects an in-plane stress is generated inside the plate. This compressive in-plane stress gives
a reduction in the natural frequencies of the plate [22–25]. This reduction can be significant
for very thin plates.

Numerical results are obtained for bolted plates fixed by a different number of bolts.
The proposed technique is then used to study the free vibrations of a circular plate rested
on an annular Winkler foundation having stiffness variable according to the angular
co-ordinate.

2. METHOD OF SOLUTION

A polar co-ordinate system (O, r, u) is introduced, with the origin at the centre of a
circular plate of radius a and uniform thickness h. By using the Rayleigh–Ritz method,
the flexural mode shapes W of the plate are expanded in a Fourier–Bessel series at both
the radial and angular co-ordinates. In particular, the trial functions in the radial direction
are the mode shapes of free-edge plates vibrating in vacuum, also including the two rigid
body modes (uniform displacement and rotation around a diameter) of the free-edge plate.
This choice gives a complete set of orthogonal trial functions and allows one to simplify
the computation of the potential energy of the system. The trial functions in the angular
direction are given by the classic Fourier series. The flexural mode shapes W with the
Fourier coefficients amn and bmn , and the admissible radial functions Wmn , are described by

W(r, u)=z2a00 + s
a

n=1

W0n (r)a0n +2
r
a

(a10 cos u+ b10 sin u)

+ s
a

n=1

W1n(r)(a1n cos u+ b1n sin u)+ s
a

m=2

s
a

n=0

Wmn (r)[amn cos (mu)

+ bmn sin (mu)], (1)

where

Wmn (r)=AmnJm (lmnr/a)+Cmn Im (lmnr/a), (2)

m and n are the numbers of nodal diameters and circles in the mode shape of a free-edge
plate, Jm and Im the Bessel and the modified Bessel functions of the first kind, Amn and Cmn

are the mode shape constants and lmn is the frequency parameter. In equation (1) it has
been assumed that the eigenfunctions of the free-edge plate are the admissible functions,
so that the values of Amn , Cmn and lmn must be given for a free-edge plate. These are
tabulated in reference [6] for Poisson’s ratio n=0·33 and in reference [7] for other n values.
The frequency parameter lmn is related to the circular frequency by vmn =(lmn /a)2z(D/
(rPh)), where D is the flexural rigidity of the plate, D=(Eh3)/(12(1− n2)), E is the Young’s
modulus and rP is the mass density of the plate material. To simplify the computations,
the mode shape constants are normalized according to

g
1

0

W2
mn (ar)r dr=1, (3)
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where r= r/a; the constants of the rigid body modes have already been normalized in
equation (1).

The reference kinetic energy of the plate is defined by

T*P =
1
2

rPh g
2p

0 g
a

0

W2(r)r dr du. (4)

By using the orthogonality of the assumed trial functions, the following expression for
T*P is obtained:

T*P =
1
2

rPha2$2p s
a

n=0

a2
0n + p s

a

m=1

s
a

n=0

(a2
mn + b2

mn )%. (5)

As a consequence of the trial functions being the actual mode shapes of free-edge plates,
the maximum potential energy of the plate can be expressed by using the well-known
modal properties of the free-edge plates. More precisely, each term of the right side of
equation (1) has the same shape as the eigenvector of free-edge plates with the same
number of circular and diametral nodes. Thus, the maximum potential energy associated
with each term of W(r, u) can be expressed as the product of the reference kinetic energy
of the corresponding mode of the free-edge plate for the squared circular frequency v2

mn

of the mode itself. Therefore, the maximum potential energy stored by the plate can be
written as the sum

VP =
1
2

rPha2$2p s
a

n=0

a2
0nv

2
0n + p s

a

m=1

s
a

n=0

(a2
mn + b2

mn )v2
mn%. (6)

By using the relation between the circular frequency vmn and the frequency parameter
lmn , equation (6) can be transformed into

VP =
1
2

D
a2 $2p s

a

n=0

a2
0nl

4
0n + p s

a

m=1

s
a

n=0

(a2
mn + b2

mn )l4
mn%, (7)

The maximum potential energy of the elastic distributed springs which simulate the
flexible translational constraint at the distance RE a from the plate centre is given by

VT =
1
2 g

2p

0

l(u)W2(R, u)R du. (8)

It is assumed that the flexible constraints have a symmetry axis, as for any equidistant
bolt disposition; the stiffness l (N m−2) of the distributed springs simulating the

Figure 1. Circular plate having elastic constraints.
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translational edge constraint (see Figure 1) can be expanded into the Fourier cosine series

l(u)= s
a

k=0

lk cos (ku). (9)

Due to the symmetry of the plate and boundary conditions, two different sets of modes
are found: symmetric and antisymmetric ones. First of all, the symmetric modes are
studied; in this case, all the coefficients bmn are zero. Therefore equation (1) can be written
in the form

W(r, u)= s
a

m=0

s
a

n=0

Wmn (r)amn cos (mu), (10)

where the definition of Wmn , equation (2), is extended to include W00 =z2 and W10 =2r/a.
By substituting equation (2) in equation (10) and then equations (9) and (10) in equation
(8), it is found

VT =
1
2 g

2p

0 $ s
a

k=0

lk cos (ku)%$ s
a

m=0

s
a

n=0

Wmn (R)amn cos (mu)%
2

R du. (11)

The result of the quadrature of equation (11) is

VT = 1
2R s

a

m=0

s
a

s=0

s
a

n=0

s
a

i=0

s
a

k=0

cmsklkamnasiWmn (R)Wsi (R), (12)

where

2p, if m= s= k=0
p, if k=0 and m= s$ 0
p, if m=0 and s= k$ 0
p, if s=0 and m= k$ 0)

cmsk=g
2p

0

cos (mu) cos (su) cos (ku) du=
g
G

G

G

G

G

G

F

f

p/2, if k=m+s and m$0 and s$0
h
G

G

G

G

G

G

J

j

.
(13)

p/2, if s=m+k and k$0 and m$0
p/2, if m=s+k and k$0 and s$0
0, otherwise

The maximum potential energy of the elastic, spiral, distributed springs which simulate
the flexible rotational constraint at the radius R (see Figure 1) is given by

VR =
1
2 g

2p

0

c(u)01W
1r

(R, u)1
2

R du. (14)

Due to the assumed symmetry of the rotational constraint, the stiffness c (Newton) of the
spiral, distributed spring can be expanded into the Fourier cosine series

c(u)= s
a

k=1

ck cos (ku). (15)
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By using equations (10) and (15), the maximum potential energy VR can be expressed as

VR =
1
2

R s
a

m=0

s
a

s=0

s
a

n=0

s
a

i=0

s
a

k=0

cmskckamnasi
1Wmn

1r
(R)

1Wsi

1r
(R), (16)

where

1Wmn

1r
(R)= 80,

2/a,
(lmn /a)[AmnJ'm (lmnR/a)+Cmn I'm (lmnR/a)],

if m= n=0
if m=1 and n= 0
otherwise, 9. (17)

For antisymmetric modes, equation (1) can be written in the form

W(r, u)= s
a

m=1

s
a

n=0

Wmn (r)bmn sin (mu). (18)

Upon inserting equations (9) and (18) in equation (8), the maximum potential energy
VT becomes

VT =
1
2

R s
a

m=1

s
a

s=1

s
a

n=0

s
a

i=0

s
a

k=0

8msklkbmnbsiWmn (R)Wsi (R), (19)

where

p, if k=0 and m= s
−p/2, if k=m+ s

8msk =g
2p

0

sin (mu) sin (su) cos (ku) du=g
G

G

F

f

p/2, if s=m+ k and k$ 0h
G

G

J

j

. (20)

p/2, if m= s+ k and k$ 0
0, otherwise

(20)

Obviously in this case both the integers m and s start from 1. The maximum potential
energy of the elastic, spiral, distributed spring for antisymmetric modes is

VR =
1
2

R s
a

m=1

s
a

s=1

s
a

n=0

s
a

i=0

s
a

k=0

8mskckbmnbsi
1Wmn

1r
(R)

1Wsi

1r
(R). (21)

The Rayleigh quotient for the problem studied is given by

(VP +VT +VR )/T*P . (22)

Now only a finite number of modes is considered in the Rayleigh–Ritz expansion. The
matrix q of the Fourier coefficients is introduced:

qmn =6amn ,
bmn ,

for symmetric modes,
for antisymmetric modes,

m=0, . . . , N−1; n=0, . . . , N	 −1
m=1, . . . , N; n=0, . . . , N	 − 1 7.

(23)

In equation (23) N terms in the circumferential direction and N	 in radial direction are used
in the expansion of symmetric modes; N and N	 will be chosen large enough to give the
accuracy required.
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The reference kinetic energy of the plate, equation (5), can be written in the concise
notation

T*P = 1
2rPha2qTMPq, (24)

where MP is a fourth order tensor, given by

(MP )mnsi =62pdmsdni ,
pdmsdni ,

if m=0
if mq 07, (25)

dms is the Kronecker delta, as is dni , and s and i have the same range of values as m and
n, respectively. The maximum potential energy of the plate, equation (7), can be written
as

VP = 1
2(D/a2)qTKPq, (26)

where the tensor KP is given by

(KP )mnsi =62pdmsdnil
4
mn ,

pdmsdnil
4
mn ,

if m=0
if mq 07. (27)

The maximum potential energy stored by the elastic distributed spring, by using equations
(12) and (19) can be written as

VT = 1
2RqTKTq, (28)

where the tensor KT is

(KT )mnsi = s
a

k=0

cmsklkWmn (R)Wsi (R), for symmetric modes, (29)

(KT )mnsi = s
a

k=0

8msklkWmn (R)Wsi (R), for antisymmetric modes. (30)

In equations (29) and (30) the sums on k are stopped, in numerical computations, at an
integer value large enough to give the required accuracy. The maximum potential energy
stored by the elastic, spiral, distributed spring, obtained from equations (16) and (21), is

VR =(1/(2R))qTKRq, (31)

where the tensor KR is given by

(KR )mnsi = s
a

k=0

cmskckR2 1Wmn

1r
(R)

1Wsi

1r
(R), for symmetric modes, (32)

(KR )mnsi = s
a

k=0

8mskckR2 1Wmn

1r
(R)

1Wsi

1r
(R), for antisymmetric modes. (33)

The problem is solved by minimizing the Rayleigh quotient, equation (22); this operation
gives a Galerkin equation that reduces to an eigenvalue problem,

((D/a2)KP +RKT +(1/R)KR )q−V2rPha2MPq=0, (34)
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V being the circular frequency (rad s−1) of the plate. The corresponding non-dimensional
equation gives the frequency parameter L of the plate:

(KP +(Ra2/D)KT +(a2/(RD))KR )q−L4MPq=0. (35)

Obviously, when one is studying both the symmetric and the antisymmetric modes, two
different Galerkin equations are obtained. It is interesting to note that the non-dimensional
stiffness of the translational constraint is

l*(u)= (Ra2/D)l(u), (36)

and the non-dimensional stiffness of the rotational constraint is

c*(u)= (a2/(RD))c(u). (37)

2.1. - 

The in-plane load gives an additional potential energy during the plate vibration that
must be added to the numerator of the Rayleigh quotient, equation (22). The maximum
potential energy connected with this phenomenon is [24]

VL =
1
2

L g
2p

0 g
R

0

{[1W/1r]2 + [(1/r)(1W/1u)]2}r dr du, (38)

where L is the uniform in-plane tensile load (N/m) and the integration is extended to the
radius R as a consequence of the compression due to the bolts being only in this area (see
Figure 1). It is to be noted that a compressive load (L Q 0) gives a negative energy that
decreases the natural frequencies. Obviously, if the plate is subjected to another uniform
in-plane load having a different origin, the integration must be extended to the outer radius
a. Simple calculation gives

VL =
1
2

L s
a

m=0

s
a

s=0

s
a

n=0

s
a

i=0

dmssmamnasi 6g
1

0

d
dr

[Wmn (Rr)]
d
dr

[Wsi (Rr)]r dr

+m2 g
1

0

Wmn (Rr)Wsi (Rr)
r

dr7, (39)

where

sm =62p,
p,

if m=0
if me 17.

Equation (39) can be written in the concise form

VL = 1
2LqTKLq, (40)

where the expression for KL is easily obtained from equation (39). It also can be useful
to introduce the following non-dimensional expression of the in-plane load:

L*= (a2/D)L. (41)
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3. VARIABLE SPRINGS DISTRIBUTED ON AN ANNULUS

By using the technique shown in section 2, it is possible to study a circular plate resting
on an annular Winkler elastic foundation or a plate subjected to an elastic moment
distributed on an annulus of its surface. Both the stiffness of the elastic foundation and
the stiffness of the spiral, distributed springs are assumed to be variable according to the
angular co-ordinate but to be uniform according to the radial co-ordinate. With this
hypothesis, equations (9) and (15) are still correct, where the stiffness l now has the
dimension (N m−3) and c (N m−1).

The lowest axisymmetric frequency of vibration of a circular plate partially embedded
in a Winkler foundation was obtained by Laura et al. [26], who assumed the foundation
stiffness to be constant. The free vibrations of circular plates with an elastic or rigid,
interior, circular support having constant stiffness was studied by Azimi [27] using the
receptance method. However, the problem studied in this section seems not to have been
treated in the open literature.

The case of symmetric modes of a plate resting on an annular Winkler foundation is
studied only because the other cases, antisymmetric modes and elastic moment distributed
on an annulus, can be similarly investigated. The maximum potential energy stored by the
elastic foundation is given by

VF =
1
2 g

2p

0 g
a2

a1
0 s

a

k=0

lk cos (ku)10 s
a

m=0

s
a

n=0

Wmn (r)amn cos (mu)1
2

r dr du, (42)

where a1 is the inner radius of the annular foundation and a2 is the outer radius of the
foundation; obviously a1 Q a2 E a. The result of the integration on u is

VF = a2 s
a

m=0

s
a

s=0

s
a

n=0

s
a

i=0

s
a

k=0

cmsklkamnasismnsi , (43)

where

smnsi =g
e2

e1

[AmnJm (lmnr)+Cmn Im (lmnr)][AsiJs (lsir)+Csi Is (lsir)]r dr, (44)

and e1 = a1/a and e2 = a2/a. The integral on r in equation (44) involves products of two
Bessel functions and is obtained by using equations (11.106), (31.101) and (33.101) in
reference [28]. The final expression is not reported because it is quite tedious; however it
gives no computational problems. The natural frequencies of the plate are still obtained
by an eigenvalue problem, minimizing the Rayleigh quotient

(VP +VF )/T*P , (45)

where VP and T*P are given by equations (24) and (26).

4. NUMERICAL RESULTS AND DISCUSSION

All the results reported in this section are given in non-dimensional form, so that they
may be applied to different geometries. In particular, the frequency parameter L is related
to the circular frequency v (rad/s) by

L= azv/ 4zD/(rPh). (46)
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4.1.    

Numerical results were obtained for the problem studied in section 2 by truncating the
infinite sums into 12 terms and using the Mathematica computer program [29]; therefore
144 modes were considered in the Rayleigh–Ritz expansion. In particular two different sets
of modes were found. They are the symmetric and the antisymmetric modes with respect
to the symmetry axis of the edge constraints.

In order to verify the accuracy of the proposed theory, the frequency parameters L of
simply supported plates have been computed for n=0·3 by using the non-dimensional
stiffnesses l*=1800 and c*=0. The first four frequency parameters are 2·22, 3·71, 5·02
and 5·41; the exact parameters are [7] 2·22152, 3·72803, 5·06096, 5·45161. The differences
are less than 1%. Analogously, the frequency parameters of clamped plates have been com-
puted by using the stiffnesses l*=1800 and c*=80. The first four frequency parameters
are 3·25, 4·65, 5·70, 6·30; the exact parameters are [3] 3·1962, 4·6109, 5·9059, 6·3064.

The frequency parameters of symmetric modes of plates clamped along part of the edge
and simply supported on the remainder were computed for n=0·3, the stiffness l*=1800
and expanding c* into a Fourier series (first 12 terms). For plates clamped along 90°, the
first three frequency parameters of symmetric modes are 2·53, 4·10, 5·17; only the
parameter of the fundamental mode, computed for n=0·25, is available in the paper of
Bartlett [14] and is 2·520 (upper bound) or 2·517 (lower bound); this is very close to the
value obtained here. The results of Bartlett [14] are in good agreement with the results of
Hirano and Okazaki [16]. Many more data are available in the paper of Narita and Leissa
[12]; the first three frequency parameters of symmetric modes that they obtained for n=0·3
are 2·547, 4·131, 5·219.

For plates clamped along 180°, the first three frequency parameters are 2·76, 4·20, 5·41;
only the value of the frequency parameter of the fundamental mode for n=0·25 is
available in reference [14]: 2·740 (upper bound) or 2·735 (lower bound), that, again, is
close to the value given here. The frequency parameter of the second mode (antisymmetric)
for n= 0·25 is available in Figure 4 of reference [16]; its numerical value is about 4·18.
Also in this case many more data are available in the paper of Narita and Leissa [12]; the
first three frequency parameters of symmetric modes that they obtained for n=0·3 are
2·770, 4·184, 5·536.

A comparison is also made with the results given in reference [11] for plates with no
edge deflection and stiffness of the spiral, distributed spring c*(u)= c0 + c1 cos (u);
symmetric modes were computed. The first case considered is when c0 =1 and c1 =0·5 for
n=0·3. The frequency parameters are 2·46, 3·85, 5·11; only the first parameter is given
in reference [11]: 2·46. The second case considered is when c0 =5 and c1 =4·5 for n=0·3.
The frequency parameters are 2·76, 4·08, 5·31; only the first parameter is given in reference
[11]: 2·78.

An interesting boundary condition is that of a plate having half an edge clamped and
half free; in the literature this problem has been studied by Narita and Leissa [13]. For
this case the stiffnesses of l* and c* both must be expanded into a Fourier series; the
stiffnesses for simulation of the clamped arc are 1250 for l* and 80 for c*. The first three
computed frequency parameters of symmetric modes are (n=0·3) 1·50, 3·07, 3·60, 4·57;
for antisymmetric modes they are 2·44, 4·35. Only terms having up to 11 waves were used
in the Fourier expansion, so that more accurate results could be obtained by considering
more terms. These results are in quite good agreement with those given in Figure 5 of the
paper of Narita and Leissa [13]. Data obtained by a standard finite element code [30], by
using 192 elements with eight nodes, are 1·56, 3·05, 3·80, 4·57 (symmetric modes) and 2·66,
4·45 (antisymmetric modes).
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T 1

Frequency parameters L of symmetric modes of circular plates
having the spring stiffnesses l*(u)=900+900 cos (Nu) and

c*(u)=40+40 cos (Nu), computed for n=0·3.

Mode
ZXXXXXXXXXXXCXXXXXXXXXXXV

N 1st 2nd 3rd 4th

0 3·25 4·65 5·70 6·30
1 2·98 3·72 4·73 5·69
2 3·08 4·58 4·62 5·96
3 3·12 4·32 5·26 5·27
4 3·13 4·40 5·62 5·63
5 3·14 4·40 5·34 5·80
6 3·16 4·46 5·42 5·89
7 3·16 4·48 5·46 5·94

4.2.      

Before applying the method to bolted plates, the frequency parameters of plates having
the spring stiffnesses l*(u)=900+900 cos (Nu) and c*(u)=40+40 cos (Nu) at the edge
are computed for different N values (n=0·3) for symmetric modes. The constant and the
oscillating parts of the stiffnesses are chosen in order to have the plate almost clamped
in N areas, and nearly free in between these areas. In fact, plates fixed with N bolts have
boundary conditions that can be simulated by non-uniform flexible constraints; when
expanding the stiffness of the constraints into Fourier series, the more important
non-constant term is, obviously, the term having N waves. Therefore, the case studied gives
a first idea of the problem. The computed frequency parameters are given in Table 1 for
N varying from 1 to 7. The frequency parameter of the fundamental mode obviously
increases with N, except for N=0.

The study was next addressed to bolted or riveted plates. The constraints given by bolts
(or rivets) can be assumed to be translational and rotational springs having high stiffness;
these springs are located at the mean radius where bolts are placed and in a quite small
area. Therefore the constraints can be expanded into Fourier series so that the
Rayleigh–Ritz method can be applied. It must be observed that here the effect of damping
due to friction at the bolted or riveted joint [31, 32] and all other nonlinear effects have
been neglected.

Figure 2. Fourier expansion of the stiffness l*(u) used for the bolted plate model (4 bolts).
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Figure 3. Symmetric mode shapes of the plate having four bolts; R= a. (a) L=2·42; (b) L=2·72; (c)
L=2·91; (d) L=3·71; (e) L=4·36.

A circular plate bolted (riveted) with four bolts at the edge was simulated for n=0·3,
by using the Fourier expansion of the stiffness l* given in Figure 2 and having a maximum
value of 3800. An analogous expansion was used to simulate c*, where the maximum
non-dimensional stiffness of the spiral spring is 80. The hypothetical stiffness function
should be close to a step function, having a constant value on the angles corresponding
to the bolt heads and zero otherwise; the non-zero constant segments can also be regarded
as parabolic arcs. Obviously, as a consequence of the choice to limit the expansions of l*
and c* to terms having up to 22 waves, only an approximation of the desired stiffness is
possible. Hence, in Figure 2, a negative stiffness for some angles is shown, but it is not
desired; a better approximation of the stiffness function can be obtained by using more
terms. The first five symmetric mode shapes are given in Figure 3 and the first three
antisymmetric mode shapes in Figure 4, where the frequency parameters are given in the
explanations. In Table 2 the frequency parameters are satisfactorily compared to those
obtained by using a standard finite element code [30]. In Figure 5 the corresponding mode
shapes obtained by using the finite element method (FEM) are plotted; they are in good
agreement with mode shapes given in Figures 3 and 4. One can observe that, according
to this model, plates fixed by four bolts present mode shapes and natural frequencies which
are quite different with respect to the modal characteristics of perfectly clamped plates.

It has previously been mentioned that bolts are located at a radius R internal to the edge.
Therefore the study is addressed to a steel plate having the following characteristics: edge
radius a=220 mm, bolt radius R=197·5 mm, thickness h=5 mm, Young’s modulus
E=206 GPa, Poisson’s ratio n=0·3; and mass density rP =7800 kg m−3. The effect of
the in-plane stress due to bolt pressure is neglected in this case. The natural frequencies
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Figure 4. Antisymmetric mode shapes of the plate having four bolts; R= a. (a) L=2·91; (b) L=4·36; (c)
L=4·82.

T 2
Frequency parameters L of modes of circular plates having four

bolts; comparison of theoretical and FEM results and
relative differences.

Theory FEM Difference [%]

Symmetric 2·42 2·40 −0·8
2·72 2·80 2·9
2·91 2·94 1·0
3·71 3·65 −1·6
4·36 4·41 1·1

Antisymmetric 2·91 2·94 1·0
4·36 4·41 1·1
4·82 4·90 1·7

of the first four modes are given in Figure 6 as dashed line versus the number of equidistant
bolts that fix the plate. It is to be noted that the second and third modes have the same
frequency and shape but the first is symmetric and the second antisymmetric. In Figure 6
the results obtained by using the finite element method [30] are plotted as solid lines. In
this finite element model the holes, that have a radius of 11 mm, have also been modelled;
moreover the bolt constraints are imposed on all the holes, so that they are distributed
over a larger area than in the previous model. Therefore the results obtained by using the
FEM (solid line in Figure 6) are larger than those of the simplified model (dashed line).
However both the models show that the bolt number largely affects the modal behaviour
of a bolted plate. The first six modes of a plate fixed by eight bolts are given in Figure 7;
the results have been obtained by using the FEM and also considering the holes. Significant
differences from the modes of the plate fixed by four bolts can be detected.

5. CONCLUSIONS

The proposed method gives a simple formulation to compute both the frequency
parameters, related to natural frequencies, and mode shapes of circular plates having
elastic constraints varying according to the angular co-ordinate. It is particularly
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Figure 5. Mode shapes of the plate having four bolts obtained by the FEM; R= a. (a) L=2·40; (b) L=2·80;
(c) L=2·94; (d) L=2·94; (e) L=3·65; (f) L=4·41.

Figure 6. Natural frequencies (Hz) of the first four modes of the bolted plate; simplified model (dashed line)
and FEM model (solid line). Mode numbers: —Q—, - - -q- - -, 1st; —E—, - - -e- - -, 2nd; —R—, - - -r- - -,
3rd; —W—, - - -w- - -, 4th.

suitable for realizing a computer program to solve quickly the eigenvalue problem. The
accuracy of the numerical results depends on the number of modes retained in the series
expansion of both mode shapes and stiffnesses of the constraints. Obviously, steep stiffness
curves require more terms in the Fourier series expansion to obtain a good accuracy.
However, even with quite a large number of modes in the expansion, the program can
easily work on a personal computer. The method is also suitable to be used in conjunction
with the artificial spring method to study quite complex structures where bolted or riveted
circular plates are employed.
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Figure 7. First six modes of the plate fixed by eight bolts as obtained by the FEM.
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